Skip to content

Data Preparation

Overview

This section covers the various modules used for data preparation in aedesproject-uif. The modules handle the preparation and processing of data after extraction, making it ready for further analysis and modeling.


demographic_data

Description

This module processes and prepares demographic data for further analysis.

Main Function

Function Name

process_demogs(iso_country_code, adm_level)

Description

Main function used for processing high resolution population density maps from Meta Data for Good and for calculating population counts, densities, and relative wealth indices.

Parameters

  • iso_country_code: ISO code of the country.
  • adm_level: Administrative level for which the population counts, densities, and relative wealth indices are computed.

Usage

from aedesproject_uif.data_preparation.demographic_data import process_demogs
process_demogs("PHL", 2)

dengue_data

Description

This module processes and prepares dengue data for further analysis.

Main Function

Function Name

process_dengue_data(iso_country_code, adm_level, end_date)

Description

Main function used for processing dengue data and calculating year-to-date (YTD) numbers.

Parameters

  • iso_country_code: ISO code of the country.
  • adm_level: Administrative level for which the population counts, densities, and relative wealth indices are computed.
  • end_date: End date for which to base the YTD computation on (in 'yyyy-mm-dd')

Usage

from aedesproject_uif.data_preparation.dengue_data import process_dengue_data
process_dengue_data("PHL", 2, "2019-12-29")

forecasting_data

Description

This module processes and prepares forecasting data for further analysis. This combines the Google Trends data and meteorological or weather data for a particular subregion within a country. This requires the file Admin_Boundaries_{iso_country_code}.csv in the data folder.

Main Function

Function Name

process_fcast_data(iso_country_code, adm, flnm)

Description

Main function used for processing forecasting data data.

Parameters

  • iso_country_code: ISO code of the country.
  • adm: Subregion name to get Google Trends and weather data on.
  • flnm: Filename of the dengue data. The file should be saved in the 'Dengue/{iso_country_code}' subfolder in 'data'. It should have the following columns: [loc = subnational area name (all caps), cases = number of dengue cases, deaths = number of dengue deaths, Region = regional area name (all caps)]

Usage

from aedesproject_uif.data_preparation.forecasting_data import process_fcast_data
iso_country_code = "PHL"
adm = "Zamboanga Sibugay"
process_fcast_data(iso_country_code, adm, "PHL.xlsx")

poi_data

Description

This module processes and prepares places of interest (POI) data from OpenStreetMap for further analysis.

Main Function

Function Name

process_osm_data(iso_country_code, adm_level)

Description

Main function used for processing the POI data. This filters only the POIs that will be used in the multidimensional risk scoring.

Parameters

  • iso_country_code: ISO code of the country
  • adm_level: Administrative level for which the POI-related indicators are to be obtained.

Usage

from aedesproject_uif.data_preparation.poi_data import process_osm_data
process_osm_data("PHL", 2)

remote_sensing_data

Description

This module processes and prepares remote sensing data for further analysis.

Main Function

Function Name

process_remote_sensing_data(iso_country_code, end_date_str)

Description

Main function used for processing remote sensing data. This computes for the averages of Normalized Difference Vegetation Index (NDVI), Normalized Difference Water Index (NDWI), and Normalized Difference Built-up Index (NDBI) from the satellite images as of the closest date to the end date that will be specified by the user.

Parameters

  • iso_country_code: ISO code of the country
  • end_date_str: End date for computing the averages (in 'dd/mm/yyyy').

Usage

from aedesproject_uif.data_preparation.remote_sensing_data import process_remote_sensing_data
process_remote_sensing_data("PHL", '29/12/2019')

remote_sensing_indices_images

Description

This module generates the images for various remote sensing indices from the spectral band layers of the Harmonized Landsat and Sentinel-2 (HLS) Land Surface reflectance images, for further analysis.

Main Function

Function Name

hls_to_indices(iso_country_code, subregion, index_func, start_date_str, end_date_str)

Description

Main function used for processing HLS images.

Parameters

  • iso_country_code: ISO code of a country.
  • subregion: Subregion name for which to process the HLS images.
  • index_func: Callable. Valid values = {calculate_ndvi, calculate_ndwi, calculate_ndbi}.
  • start_date_str: Start date for processing images (in 'dd/mm/yyyy').
  • end_date_str: End date for processing images (in 'dd/mm/yyyy').

Usage

from aedesproject_uif.data_preparation.remote_sensing_indices_images import hls_to_indices
iso_code = "PHL"  # Example ISO country code for Philippines
subregion_name = "Zamboanga Sibugay"  # Example subregion
hls_to_indices(iso_code, subregion_name, calculate_ndvi, '01/12/2019', '18/06/2023')
hls_to_indices(iso_code, subregion_name, calculate_ndwi, '01/12/2019', '18/06/2023')
hls_to_indices(iso_code, subregion_name, calculate_ndbi, '01/12/2019', '18/06/2023')
hls_to_indices(iso_code, subregion_name, calculate_fpar, '01/12/2019', '18/06/2023')

risk_data_consolidation

Description

This module processes and prepares risk data consolidation for further analysis.

Main Function

Function Name

combine_inform_data(iso_country_code, end_date)

Description

Main function used for processing risk data consolidation data. This merges the meteorological or weather data, remote sensing averages data, filtered POIs data, and demographic data for subsequent use in multidimensional risk modeling and scoring.

Parameters

  • iso_country_code: ISO code of a country.
  • end_date: End date for the report (in 'dd/mm/yyyy')

Usage

from aedesproject_uif.data_preparation.risk_data_consolidation import combine_inform_data
combine_inform_data("PHL", "29/12/2019")

weather_data

Description

This module processes and prepares weather data for further analysis.

Main Function

Function Name

process_weather_data(iso_country_code, end_date)

Description

Main function used for processing weather data. This computes for the 3-month average values of moisture, humidity, precipitation, and temperature data.

Parameters

  • iso_country_code: ISO code of a country.
  • end_date: End date for the report (in 'yyyy-mm-dd')

Usage

from aedesproject_uif.data_preparation.weather_data import process_weather_data
process_weather_data("PHL", '2019-12-29')